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Abstract. Latin has historically led the state-of-the-art in handwrit-
ten optical character recognition (OCR) research. Adapting existing sys-
tems from Latin to alpha-syllabary languages is particularly challenging
due to a sharp contrast between their orthographies. Due to a cursive
writing system and frequent use of diacritics, the segmentation and/or
alignment of graphical constituents with corresponding characters be-
comes significantly convoluted. We propose a labeling scheme based on
graphemes (linguistic segments of word formation) that makes segmen-
tation inside alpha-syllabary words linear and present the first dataset
of Bengali handwritten graphemes that are commonly used in everyday
context. The dataset contains 411k curated samples of 1295 unique com-
monly used Bengali graphemes. Additionally, the test set contains 900
uncommon Bengali graphemes for out of dictionary performance eval-
uation. The dataset is open-sourced as a part of a public Handwritten
Grapheme Classification Challenge on Kaggle to benchmark vision algo-
rithms for multi-target grapheme classification. The unique graphemes
present in this dataset are selected based on commonality in the Google
Bengali ASR corpus. From competition proceedings, we see that deep
learning methods can generalize to a large span of out of dictionary
graphemes which are absent during training 1 .

1 Introduction

Speakers of languages from the alpha-syllabary or Abugida family comprise of
up to 1.3 billion people across India, Bangladesh, and Thailand alone. There is
significant academic and commercial interest in developing systems that can op-
tically recognize handwritten text for such languages with numerous applications
in e-commerce, security, digitization, and e-learning. In the alpha-syllabary writ-
ing system, each word is comprised of segments made of character units that are
in phonemic sequence. These segments act as the smallest written unit in alpha-
syllabary languages and are termed as Graphemes [12]; the term alpha-syllabary
itself originates from the alphabet and syllabary qualities of graphemes [7]. Each
grapheme comprises of a grapheme root, which can be one character or several
characters combined as a conjunct. The term character is used interchange-
ably with unicode character throughout this text. Root characters may be ac-
companied by vowel or consonant diacritics- demarcations which correspond to
1 Kaggle Competition kaggle.com/c/bengaliai-cv19

https://www.kaggle.com/c/bengaliai-cv19
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Fig. 1: Orthographic components in a Bangla (Bengali) word compared to En-
glish and Devnagari (Hindi). The word ‘Proton’ in both Bengali and Hindi is
equivalent to its transliteration. Characters are color-coded according to phone-
mic correspondence. Unlike English, characters are not arranged horizontally
according to phonemic sequence in Hindi and Bengali.

phonemic extensions. To better understand the orthography, we can compare the
English word Proton to its Bengali transliteration েপৰ্াটন (Fig. 1). While in En-
glish the characters are horizontally arranged according to phonemic sequence,
the first grapheme for both Bengali and Devanagari scripts have a sequence of
glyphs that do not correspond to the linear arrangement of unicode characters
or phonemes. As most OCR systems make a linear pass through a written line,
we believe this non-linear positioning is important to consider when designing
such systems for Bengali as well as other alpha-syllabary languages.

We propose a labeling scheme based on grapheme segments of Abugida lan-
guages as a proxy for character based OCR systems; grapheme recognition in-
stead of character recognition bypasses the complexities of character segmenta-
tion inside handwritten alpha-syllabary words. We have curated the first Hand-
written Grapheme Dataset of Bengali as a candidate alpha-syllabary language,
containing 411882 images of 1295 unique commonly used handwritten graphemes
and ∼ 900 uncommon graphemes (exact numbers are excluded for the integrity of
the test set). While the cardinality of graphemes is significantly larger than that
of characters, through competition proceedings we show that the classification
task is tractable even with a small number of graphemes- deep learning models
can generalize to a large span of unique graphemes even if they are trained with
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a smaller set. Furthermore, the scope of this dataset is not limited to the domain
of OCR, it also creates an opportunity to evaluate multi-target classification al-
gorithms based on root and diacritic annotations of graphemes. Compared to
Multi-Mnist [22] which is a frequently used synthetic dataset used for multi-
target benchmarking, our dataset provides natural data of a multi-target task
comprising of three target variables.

The rest of the paper is organized as follows. Section 2 discuses previous
works. Section 3 shows the different challenges that arise due to the orthogra-
phy of the Bengali language, which is analogous to other Abugida languages. Sec-
tion 4 formally defines the dataset objective, goes into the motivation behind a
grapheme based labeling scheme, and discusses briefly the methodology followed
to gather, extract, and standardize the data. Section 5 discusses some insights
gained from our Bengali Grapheme Classification Competition (2019− 2020) on
Kaggle along with solutions developed by the top-ranking participants. Finally
section 6 presents our conclusions. For ease of reading, we have included the
IPA standard English transliteration of Bengali characters in {.} throughout the
text.

2 Related Work

Handwritten OCR methods in recent times have systematically moved towards
recognition at word or sentence levels instead of characters, facilitated by word
recognition datasets like the IAM-Database [19] that contains 82, 227 words for
English with a lexicon of 10, 841 words. Bengali on the other hand, is a low-
resource language considering the volume of the word level recognition datasets
currently available [21, 23] e.g. Roy et al. [21] introduced a dataset of alpha-
syllabary words comprising of 17, 091 Bengali and 16, 128 Devnagari words,
which is significantly low compared to their English counterparts. The absence
of a standardized corpus for Bengali, analogous to the Lancaster-Oslo/Bergen
Corpus (LOB) [18], inhibits the collection of rich datasets of Bengali handwrit-
ten words. In recent times, several datasets [1,6,20] have been made for Bengali
handwritten isolated characters and their effectiveness has been limited. Apart
from the absence of datasets, adopting state-of-the-art methods from Latin to
alpha-syllabary languages face significant challenges since the sequence of glyphs
don’t always follow the sequence of characters in the word due to the use of di-
acritics. This introduces a disconnect between the order of graphical states in
the word image with the order of states in the ground truth string, which is key
to alignment methods [3] and also the alignment free forward-backward algo-
rithm of connectionist temporal classification (CTC) models [13] for word level
recognition. Languages with different writing systems therefore require language
specific design of the recognition pipeline and need more understanding of how
it affects performance. For Bengali, grapheme represents the smallest unit of a
word encapsulated by the relevant glyphs (Fig. 1). Representing handwritten
words as graphemes would allow the detection model to bypass glyph sequence
based complexities- graphemes (as collection of character glyphs) are sequen-

https://www.kaggle.com/c/bengaliai-cv19
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tially arranged in the same order for both the word image and the word string.
Therefore grapheme recognition models trained on our dataset can be employed
as a pretrained front-end for a CTC pipeline, that does word level recognition
with graphemes as units. To the best of our knowledge, this is the first work
that proposes grapheme recognition for alpha-syllabary OCR.

3 Challenges of Bengali Orthography

As mentioned before in section 1, each Bengali word is comprised of segmental
units called graphemes. Bengali has 48 characters in its alphabet- 11 vowels
and 38 consonants (including special characters ‘ৎ’{ṯ},‘◌ং’ {ṁ},‘◌ঃ’{ḥ}). Out
of the 11 vowels, 10 vowels have diacritic forms. There are also four consonant
diacritics, ‘◌য্’ (from consonant য {ya}), ‘◌র্’ (from consonant র {ra}), ‘৴’ (also from
consonant র {ra}) and ‘◌ঁ’. We follow the convention of considering ‘◌ং’{ṁ},‘◌ঃ’
{ḥ} as standalone consonants since they are always present at the end of a
grapheme and can be considered a separate root character.

3.1 Grapheme Roots and Diacritics

Fig. 2: Different vowel diacritics (green) and consonant diacritics (red) used in
Bengali orthography. The placement of the diacritics are not dependent on the
grapheme root.

Graphemes in Bengali consist of a root character which may be a vowel or
a consonant or a consonant conjunct along with vowel and consonant diacritics
whose occurrence is optional. These three symbols together make a grapheme
in Bengali. The consonant and vowel diacritics can occur horizontally, verti-
cally adjacent to the root or even surrounding the root (Fig. 2). These roots
and diacritics cannot be identified in written text by parsing horizontally and
detecting each glyph separately. Instead, one must look at the whole grapheme
and identify them as separate targets. In light of this, our dataset labels individ-
ual graphemes with root characters, consonant and vowel diacritics as separate
targets.

3.2 Consonant Conjuncts or Ligatures

Consonant conjuncts in Bengali are analogous to ligatures in Latin where multi-
ple consonants combine together to form glyphs which may or may not contain
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characteristics from the standalone consonant glyphs. In Bengali, up to three
consonants can combine to form consonant conjuncts. Consonant conjuncts may
have two (second order conjuncts, eg. ষ্ট = শ + ট {sta = śa + ta }) or three (third
order conjuncts, eg. ক্ষ্ণ = ক + ষ + ন {kṣṇa = ka + ṣa + na}) consonants in the
cluster. Changes in the order of consonants in a conjunct may result in complete
or partial changes in the glyph. The glyphs for conjuncts can get very complex
and can even be hard for human subjects to discern (See Section C of Appendix
in supplementary materials).

3.3 Allographs

(a) (b) (c) (d)

Fig. 3: Examples of allograph pairs for the same consonant conjunct ‘ঙ্গ’ {ṅga}
(3a and 3b) and the same vowel diacritic ‘◌ু’ {u} (3c and 3d) marked in green.
3b and 3d follows an orthodox writing style.

It is also possible for the same grapheme to have multiple styles of writing,
called allographs. Although they are indistinguishable both phonemically and in
their unicode forms, allographs may in fact appear to be significantly different
in their handwritten guise (Fig. 3). Allograph pairs are sometimes formed due
to simplification or modernization of handwritten typographies, i.e. instead of
using the orthodox form for the consonant conjunct ঙ্গ = ঙ + গ as in Fig. 3b, a
simplified more explicit form is written in Fig. 3a. The same can be seen for
diacritics in Fig. 3c and Fig 3d. It can be argued that allographs portray the
linguistic plasticity of handwritten Bengali.

3.4 Unique Grapheme Combinations

One challenge posed by grapheme recognition is the huge number of unique
graphemes possible. Taking into account the 38 consonants (nc) including three
special characters, 11 vowels (nv) and (n3

c + n2
c) possible consonant conjuncts

(considering 2nd and 3rd order), there can be ((nc − 3)3 + (nc − 3)2 + (nc −
3)) + 3 different grapheme roots possible in Bengali. Grapheme roots can have
any of the 10+1 vowel diacritics (nvd) and 7+1 consonant diacritics (ncd). So
the approximate number of possible graphemes will be nv + 3 + ((nc − 3)3 +
(nc − 3)2 + (nc − 3)) ·nvd ·ncd or 3883894 unique graphemes. While this is a big
number, not all of these combinations are viable or are used in practice.
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4 The Dataset

Of all the possible grapheme combinations, only a small amount is prevalent in
modern Bengali. In this section we discuss how we select the candidates for data
collection and formalize the grapheme recognition problem.

4.1 Grapheme Selection

To find the popular graphemes, we use the text transcriptions for the Google
Bengali ASR dataset [16] as our reference corpus. The ASR dataset contains a
large volume of transcribed Bengali speech data. It consists of 127565 utterances
comprising 609510 words and 2111256 graphemes. Out of these graphemes, 1295
commonly used Bengali graphemes in everyday vocabulary is selected. Each can-
didate grapheme had to occur more than twice in the entire corpus or used in
at least two unique words to be selected in our pool. Graphemes from highly
frequent transliterations and misspelled words were also considered. The un-
common graphemes were synthesized by uniformly sampling from all the pos-
sible combinations and verifying their legibility. (See Section B of Appendix in
supplementary materials for a full list of grapheme roots and diacritics)

4.2 Labeling Scheme

Bengali graphemes can have multiple characters depending on the number of
consonants, vowels or diacritics forming the grapheme. We split the characters
of a Bengali grapheme into three target variables based on their co-occurrence:

1. Vowel Diacritics, i.e. ◌া, ি◌, ◌ী, ◌ু, ◌ূ, ◌ৃ, ে◌, ৈ◌, ে◌া, ে◌ৗ. If the grapheme con-
sists of a vowel diacritic, it is generally the final character in the unicode
string. Graphemes cannot contain multiple vowel diacritics. The vowel dia-
critic target variable has 11 (Nvd) orthogonal classes including a null diacritic
denoting absence.

2. Consonant Diacritics, i.e. ◌য্, ◌র্, ◌ঁ, ৴. Graphemes can have a combination
of consonant diacritic characters eg. ‘◌র্য্’ = ‘◌র্’ + ‘◌য্’. We consider each com-
bination to be a unique diacritic in our scheme for ease of analysis. The
consonant diacritic target variable has 8 (Ncd) orthogonal classes including
combinations and a null diacritic.

3. Grapheme roots, which can be comprised of vowels, consonants or conjuncts.
In unicode these are placed as the first characters of a grapheme string. An
alternative way of defining grapheme roots would be considering all the char-
acters apart from diacritics as root characters in a grapheme. While possible
orthogonal classes under this target variable can be a very big number (see
Section 3.4), we limit the number of consonant conjuncts based on common-
ality in everyday context. There are in total 168 (Nr) roots in the dataset.

Grapheme recognition thus becomes a multi-target classification task for
handwritten Bengali, rather than the traditional multi class classification adopted
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by previous datasets of this kind [1,2,20,23]. Here, a vision algorithm would have
to separately recognize grapheme roots, vowel diacritics and consonant diacritics
as three target variables. Formally, we consider our dataset D = {s1, s2, ..., sN}
as composed of N data points si = {xi, y

r
i , y

vd
i , ycdi }. Each datum si consists of

an image, xi ∈ RH×W and a subset of three target variables yri , yvdi and ycdi
denoting the ground truth for roots, vowel diacritics and consonant diacritics
respectively, i.e., yri ∈ R, yvdi ∈ V, and ycdi ∈ C. Here, R, C, and V is the set of
roots, vowel diacritics and consonant diacritics, respectively, where |R| = Nr,
|C| = Ncd, and |V| = Nvd. The multi-target classification task, thus will consist
of generating a classifier h which, given an image xi, is capable of accurately
predicting its corresponding components, i.e., h(xi) = {yri , yvdi , ycdi }.

Although we have formulated the grapheme recognition challenge as a multi-
target classification task, it is only one way of defining the grapheme recognition
problem. In fact, we will see in Section 5.2, that the problem can also be defined
as a multi-label and a metric learning task.

4.3 Dataset collection & standardization

The data was obtained from Bengali speaking volunteers in schools, colleges and
universities. A standardized form (See Section A of Appendix in supplementary
materials) with alignment markers were printed and distributed. A total of 2896
volunteers participated in the project. Each subject could be uniquely identified
through their institutional identification number submitted through the forms,
which was later de-identified and replaced with a unique identifier for each sub-
ject. The dataset curation pipeline is illustrated in Fig. 4.
Collection. Contributors were given one of 16 different template forms with
prompts for graphemes. The templates were automatically generated using Adobe
Photoshop scripts. Each template had a unique set of graphemes compared to
the others. Since the 16 different templates were not dispersed uniformly every
time minor sampling bias was introduced during collection.
Pruning and Scanning. The forms were scanned and analysed carefully to
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Fig. 4: Overview of dataset creation process. Green arrows refer to the bias/errors
removed in each step and red refers to the ones inevitably introduced.
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remove invalid submissions and reduce sampling bias. In this step additional
errors were introduced due to misalignment during scanning. Unfilled or im-
properly filled samples were still retained. All the forms were scanned using the
same device at 300 dpi.
Extraction. An OCR algorithm was used to automatically detect the tem-
plate ID. The template identifier asserted which ground truth graphemes where
present in which boxes of the form. In this step, OCR extraction errors intro-
duced label noise. The scanned forms were registered with digital templates to
extract handwritten data, which sometimes introduced alignment errors or er-
rors while extracting metadata. Unfilled boxes were removed automatically in
this step.
Preliminary Label Verification. The extracted graphemes were compiled
into batches and sent to 22 native Bengali volunteers who analysed each im-
age and matched them to their corresponding ground truth annotation. In this
step OCR errors and label noise was minimised. However additional error was
introduced in the form of conformity bias, linguistic bias (i.e. allograph not rec-
ognized), grapheme bias (i.e. particular grapheme has significantly lesser number
of samples) and annotator subjectivity. Samples selected as erroneous by each
annotator was stored for further inspection instead of being discarded.
Label Verification. Each batch from the previous step, was sent to one of
two curators who validated erroneous samples submitted by annotators and re-
checked unique graphemes which had a higher frequency of mislabeled samples.
Subjectivity Normalization. A fixed guideline is decided upon by all cura-
tors that specifies how much and the nature of deformity a sample can contain.
Based on this, subjectivity errors were minimized for unique graphemes with
high frequency mislabeled samples.

4.4 Training Set Metadata

The metadata collected through forms are compiled together for further studies
on dependency of handwriting with each of the meta domains. Only the train-
ing set metadata is made public; the test set metadata will be made available
upon request. The training set contains handwriting from 1448 individuals, each
individual contributing 138.8 graphemes on average; 1037 of the contributors
identified as male, 383 as female, 4 as non-binary and 24 declined to identify.
The medium of instruction during primary education for 1196 contributors was
Bengali, for 214 English and for 12 Madrasha (Bengali and Arabic); 33 are left-
handed while 1192 are right handed. Of all the contributors, 93 fall in the age
group between 0 − 12, 245 in 13 − 17, 1057 in 18 − 24, 22 in 25 − 35 and 2 in
ages between 36− 50.

4.5 Dataset Summary

A breakdown of the composition of the train and test sets of the dataset is given
in Table 1. Additionally, a breakdown of the roots into vowels, consonants and
conjuncts along with the number of unique classes and samples for each target
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Table 1: Number of samples present in each subset of the dataset. Null diacritics
are ignored.

Targets Sub-targets Classes Samples Training Set Public Test Set Private Test Set

Roots

Vowel Roots 11 5315 2672 1270 1398
Consonant Roots 38 215001 107103 52185 57787
Conjunct Roots 119 184050 91065 45206 53196

Total 168 404366 200840 98661 112381

Diacritics Vowel Diacritics 10 320896 159332 78503 89891
Consonant Diacritics 7 152010 75562 37301 44649

is also shown. Note that the absence of a diacritic which is labeled as the null
diacritic ‘0’ is not considered when counting the total samples as the glyph for
the diacritic is not present in such samples. The final dataset contains a total
of 411882 handwritten graphemes of size 137 by 236 pixels. See supplementary
materials and Appendix A for dataset collection forms, tools and protocols.

4.6 Class Imbalance in Dataset

We divide the roots into three groups- vowels, consonants, and consonant conjuncts-
and inspect class imbalance within each. There are linguistic rules which con-
strict the number of diacritics that may occur with each of these roots, eg. vowel
roots never have added diacritics. Although imbalance in vowel roots is not ma-
jor, it must be noted because the relatively infrequent vowel roots ‘ঈ’, ‘ঊ’ {ī, ū}
and ‘ঐ’{ai} share a close resemblance to the more frequent roots ‘ই’, ‘উ’ {i, u}
and ‘এ’ {ē} respectively.

The imbalance in consonant roots is however much more striking as we can
see in Fig. 5. The imbalance here is twofold- in the number of total sample
images of consonant roots and the imbalances in the distribution of the vowel
and consonant diacritics that can occur with each consonant.

The consonant conjuncts demonstrate imbalance similar to the consonant
roots but with an added degree of complexity. We can visualize this imbalance
much better via the chord diagram in Fig. 6. The consonant conjuncts are made
up of multiple consonant characters and since the glyph of a consonant conjunct
often shares some resemblance with its constituent consonants, highly frequent
consonants may increase estimation bias for less frequent conjuncts containing
them. This phenomenon is indeed visible and further discussed in Section. 5.3.

5 The Challenge

The dataset is open-sourced as part of a public Handwritten Grapheme Recog-
nition Kaggle competition. Of all the samples present in the dataset, 200840
were placed in the training set, 98661 in the public test set, and 112381 in the
private test set; while making sure there is no overlap in contributors between
sets. Most of the uncommon graphemes were placed in the private test set and
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Fig. 5: Number of samples per consonant root. Each bar represents the number
of samples which contain a particular consonant and the divisions in each bar
represent the distribution of diacritics in the samples containing that consonant.

none in the training subset. Throughout the length of the competition, the par-
ticipants try to improve their standings based on the public test set results. The
private test set result on the other hand, is kept hidden for each submission and
is only published after the competition is over. Of the OOD graphemes, 88.4%
were placed in the private test set to prevent over-fitting models based on public
standings. This motivated the participants to build methods that have the ca-
pacity to classify out of dictionary graphemes by recognizing the target variables
independently.

5.1 Competition Metric

The metric for the challenge is a hierarchical macro-averaged recall. First, a
standard macro-averaged recall is calculated for each component. Let the macro-
averaged recall for grapheme root, vowel diacritic, and consonant diacritic be
denoted by Rr, Rvd, and Rcd respectively. The final score R is the weighted
average

R =
1

4
(2Rr +Rvd +Rcd). (1)
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Fig. 6: Connectivity graph between consonants forming second-order conjuncts.
The length of each arc shows how often the consonant occurs as a consonant
conjunct. Higher frequency of consonants (eg. ক{ka}) may bias lower frequency
conjuncts towards the constituent.

5.2 Top scoring methods

The Kaggle competition resulted in 31, 002 submissions from 2, 059 teams con-
sisting of 2, 623 competitors. The participants have explored a diverse set of
algorithms throughout the competition (See Section E in Appendix for more de-
tails); the most popular being state of the art image augmentation methods such
as cutout [11], mixup [27], cutmix [26], mixmatch [5] and fmix [14]. Ensemble
methods incorporating snapshots of the same or different network architectures
were also common.

The winner took a grapheme classification approach rather than compo-
nent recognition. The input images were classified into 14784 (168 x 11 x 8)
classes, that is, all the possibles graphemes that can be created using the avail-
able grapheme roots and diacritics. An EfficientNet [25] model is initially used
to classify the graphemes. However, if the network is not confident about its
prediction then the sample is considered as an OOD grapheme and it is passed
on to the OOD grapheme classification pipeline. The pipeline consists of a Cy-
cleGan [28] that is trained to convert handwritten graphemes into typeface ren-
dered graphemes. An EfficientNet classifier trained on a 14784 class synthetic
grapheme dataset is used as an OOD grapheme classifier.

The second place team built their solution upon a multi-label grapheme clas-
sifier, but the number of classes were limited to the 1295 unique graphemes in
training. A post processing heuristic is employed to generalize for any OOD
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graphemes. For each class in a target variable (eg. consonant diacritic ‘◌র্’), prob-
abilities of all the graphemes containing the target (e.g., ধৰ্ু, বৰ্, িপৰ্ etc.) are aver-
aged. This is repeated for every class for a target and the class with the highest
average probability is selected for that target variable. Architectures used are
different variants of SE-ResNeXt [15].

The third placed team dealt with the OOD graphemes by using metric learn-
ing. They used Arcface [10] to determine if an input test sample is present or
absent in the train dataset. If the grapheme is present, a single EfficientNet
model is used that detects the grapheme components in a multi-target setting.
Otherwise, a different EfficientNet model is used to recognize each grapheme
component.

A brief outline of the different approaches used by the participants and how
they handled In Dictionary (ID) and Out of dictionary (OOD) graphemes are
given in Table 2. More then half of the teams achieved a decent score without
considering any specialized method for detecting OOD graphemes, proving the
hypothesis that it is possible to create a generalized model based on frequently
occurring graphemes.

Table 2: Top 10 results on grapheme recognition challenge. Number of teams used
separate models for in dictionary (ID) and out of dictionary (OOD) classification.
MC = multi-class, ML = multi-label; MT = multi-target; SM = similarity metric
learning.
Rank Augmentation Problem Transform OOD Detection Model Architecture Public Score Private ScoreID OOD ID (M1) OOD (M2)

1 Auto-Augment [9] MC MC M1 confidence below threshold
and M2 output is OOD EfficientNet-b7 [25] CycleGan [28],

EfficientNet-b7 0.995 0.976

2 Fmix [14] ML - - SeResNeXt [15] - 0.996 0.969

3 CutMix [26] SM MT Arcface [10] EfficientNet,
SeResNeXt EfficientNet 0.995 0.965

4 Cutout [11] SM MT Arcface Arcface EfficientNet 0.994 0.962
5 CutMix MT - - SeResNeXt - 0.994 0.958

6 CutMix, MixUp [27],
Cutout, GridMask [8] MT - - SeResNeXt,

InceptionResNetV2 [24] - 0.987 0.956

7 CutMix, Cutout MT - - PNASNet-5 [17] - 0.994 0.955
8 Cutout [11] MT MT Arcface EfficientNet-b7 EfficientNet 0.994 0.955
9 CutMix, Grid-Mix [4] MT - - SeResNeXt, Arcface - 0.992 0.954
10 Cutout MT - - SeResNeXt - 0.984 0.954

5.3 Submission Insights

For exploratory analysis on the competition submissions, we take the top 20
teams from both the private and public test set leaderboards and categorize
their submissions according to quantile intervals of their private set scores as
Tier 1 (> .976), Tier 2 (> .933, < .976), Tier 3 (> .925, < .933) and Tier 4
(> .88, < .925). It is seen that the Tier 4 submissions have low discrepancy
between public and private test set metrics; suggesting these to be high bias -
low variance estimators. The Tier 3 submissions were the total opposite and had
high discrepancy on average, indicating fine-tuning of the model on the public
test set. This discrepancy increases as we go to Tier 2 submissions but then
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Fig. 7: Similarity between handwritten grapheme roots based on Tier 1 confu-
sion. Nodes are color coded according to the first character in each root. Edges
correspond to sum of false negative rates between nodes, higher edge width cor-
responds to higher similarity between handwritten grapheme roots.

decreases for Tier 1 submissions. In fact if we observe the progression of the
Tier 2 teams, many of them were once near the top of the private leaderboard
but later fine-tuned for the public test set. Contrary to intuition, error rate
doesn’t significantly vary depending on the frequency of the unique grapheme
in the training set, within each of these quantile groups. However, the error rate
is higher by 1.31% on average for OOD graphemes, with Tier 1 error rate at
4.4(±0.07)%.

Considering the size of the challenge test set, possible reasons behind test
set error could be label noise, class imbalance or general challenges surrounding
the task. We start by inspecting the samples that were misclassified by all the
Tier 1 submissions and find that only 34.8% had label noise. Significant error
can be seen due to the misclassification of consonant diacritic classes which are
binary combinations of {‘◌য্’,‘৴’ or ‘◌র্’}, with high false positives for the individual
constituents. This can be attributed to the class imbalance in the dataset since
combinations are less frequent that their primitives; separately recognizing the
primitives in a multi-label manner could be a possible way to reduce such error.
The vowel diacritic component has the highest macro-averaged recall, proving
to be the easiest among the three tasks.

The false negatives of different grapheme roots give us significant insights on
the challenges present in Bengali orthography. A pair of grapheme roots can have
high similarity due to common characters or even similarity between glyphs of
constituents. Probing the Tier 1 false negatives, we find that 56.5% of the error
is between roots that share at least one character. Misclassification between con-
sonant conjuncts with the same first and second characters accounts for 28.8%
and 21.5% of the error. Confusion between roots by Tier 1 submissions highly
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correlate with similarity between glyphs and is visualized in Fig. 7. Edges corre-
spond to the sum of false negative rates between nodes. Edges are pruned if the
sum is below .5%. Sub-networks are formed by groups that are similar to each
other. Class imbalance also plays an interesting role in such cases; misclassifi-
cation of roots with high similarity between their handwritten glyphs can also
be biased towards one class due to higher frequency, eg. roots with ‘ণ’ {ṇa} are
more frequently misclassified as roots with ‘ন’ {na} because of ‘ন’ {na} being
more frequent. For more insight, see Section D and F in Appendix for confusion
between roots.

6 Conclusion

In this paper, we outlined the challenges of recognizing Bengali handwritten
text and explained why a character based labeling scheme- that has been widely
successful for English characters- does not transfer well to Bengali. To rectify
this, we propose a novel labeling scheme based on graphemes and present a
dataset based on this scheme. Crowd sourced benchmarking on Kaggle shows
that algorithms trained on this dataset can generalize on out of dictionary
graphemes. This proves that it is possible to summarize the entire cohort of
unique graphemes through some representative samples. One limitation of grapheme
level recognition is that graphemes written in isolation may shift away from nat-
ural handwriting. Our proposed grapheme labeling scheme could be used as
a stepping stone for future word level datasets. Grapheme recognition models
could also be used as a front-end to solve OCR related tasks in not only Bengali
but also other related languages in the alpha-syllabary family.
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A Grapheme Collection Form

Handwritten Graphemes were collected from 16 different template forms de-
signed for efficient extraction by scanning. Forms also had additional information
that include chirality, age group, gender, medium of instruction and location of
primary school to allow for further study into handwriting. Names and IDs were
collected to keep into account if multiple forms were submitted by the same
person. All forms and data were later de-identified. A sample form is showed in
Fig. 8

Fig. 8: Sample of OCR form for extracting handwritten graphemes
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B Label-Class Overview in Dataset

All classes for each of the three target variables have been listed in their utf-8
form in Table 4. Note that all the diacritics are shown in a grapheme with root
ব as an example. Their glyphs will, however, appear unchanged with any other
root.

Table 3: Frequently discarded graphemes during label verification phases of
dataset curation.

Root Category Top 5 Mislabeled Graphemes

Consonants গুঁ গুর্ গু শুয্ ঘূ
2nd order Conjuncts ষ্টয্া ঙৃ্ক ষ্পা ঙ্ক ষ্কৰ্ী
3rd order Conjuncts িঙ্ক্ত ক্ষ্ণ েক্ষ্ণৗ ঙ্ক্ষা িন্দব্

C Contribution Error and Subjectivity

The original data went through a rigorous curation process; approximately 12817
samples were discarded due to either label noise or corrupted submissions. Sam-
ples that would be illegible to human annotators without prior knowledge of the
ground truth were discarded from the dataset. A GUI based python toolkit was
provided for the label verification process (see Fig. 12). Although this was done
to make sure the data is clean, it should be mentioned that a concrete definition
of which samples should be considered legible does not exist. In fact some would
consider a written sample perfectly legible while others would consider the same
as absolutely unclear. If we look at the error data, among the top 100 unique
graphemes that had the most erroneous contributions, 83 had consonant con-
juncts as the grapheme root. Six out of the nine 3rd order consonant conjuncts
in the dataset, were among the most erroneous graphemes. This matches the
intuition that more complex grapheme glyphs are harder to discern as writers
are more likely to make mistakes in typography when writing glyphs with more
intricate patterns. The most common errors in writing graphemes categorized
by the number of simple consonants in the root are given in Table 3.

D Consonant Conjuncts vs Diacritics

One question that arises while splitting the constituents of a grapheme into the
three bins of our labeling scheme (see Section 4.2) is the ambiguity between
consonant conjuncts and consonant diacritics. While conjuncts are formed by
adding multiple consonants together, consonant diacritics also add consonants
with other consonants but as demarcations that are completely different from
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Fig. 9: Similarity between handwritten non-conjunct roots based on Tier 1 con-
fusion scores. Edges correspond to sum of false negative rates between nodes,
higher edge width corresponds to higher similarity. Only roots with an error rate
more than 15% are shown in the figure.

the original glyph of the consonant. For example, the consonant diacritic ’◌য্’
is completely different from its original form ’য’. Whenever it is added to a
consonant root, the root retains its original glyph. This is not always the case
for consonant conjuncts, where the consonants being added to might change its
form significantly. In Bengali grammar, consonant diacritics are called Fola and
defined separately from consonant conjuncts as Jukto Borno. The consonants
that have diacritic forms do not construct conjuncts, eg. ’য’ and ’র’ are not
present as a second order conjunct constituent in Fig. 6.

E Rank Progression in Competition

To benchmark the dataset extensively, a Kaggle competition was organized based
on this dataset. This resulted in 31,002 submissions from 2,059 teams consisting
of 2,623 competitors. Analyzing the submissions allowed us to further discover
important statistics on this dataset. Since the competition was held with half
the test set hidden, it is important to know when the model is over-fitting and
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find ways to generalize for OOD data. Without proper tuning, large models will
tend to over-fit on the public test set and perform poorly on the private one.
This is shown in Fig. 10. Five teams’ progression has been highlighted and the
others grayed out. Notice how the teams marked and were able to decrease
their score discrepancy and jump up in rank. The teams marked , and ,
scored high in the private test set at some point but over-fit thereafter falling in
rank.
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  D

iscre
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Fig. 10: Figure showing how the relative rank of selected teams changed during
the competition. Some teams have been highlighted and their corresponding
public-private score difference/discrepancy represented by the bar diagrams.

A major reason for many of the teams over-fitting to the public set is that
the test set distribution is somewhat different from the training distribution.
The problem is compounded by the presence of OOD graphemes in the test
set. These account for about 3.5% of test samples. So it is crucial that steps be
taken to check if models trained on the dataset use augmentation and generative
techniques to match the distribution of the test set. The issue of generalization
can be further checked by seeing how a model performs on samples that are
comparatively less frequent in the training set. We took all submissions that
were reasonably good (top 75% among all submissions corresponding to a private
score of 0.88 and higher) and classified them further into four classes - Tier 1
(Top 25%, score > 0.976), Tier 2 (Between 25% and 50%, 0.933 < score < 0.976),
Tier 3 ((Between 50% and 75%, 0.925 < score < 0.933) and Tier 4 (Bottom
25%, 0.88 < score < 0.925). We mapped their performance against their public-
private score discrepancy defined as the difference, ∆ between their public and
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private scores as shown in Table 5. The discrepancy levels were categorized
according to their quantile intervals and the number of submissions belonging
to that interval are shown in the table. Notice how the Tier 4 submissions
category have low discrepancy. These submissions were high bias - low variance.
The Tier 3 submissions category were the total opposite and had mostly high
discrepancy. These submissions were over-fitting to the training data. However,
notice the transition that occurs between Tier 2 and the Tier 1 models in terms
of the change in the number of low and high discrepancy submissions. The Tier
2 submissions were from models that were over optimized for the public test set
which degraded their performance on the private set.

Another important aspect to see is how the different models were performing
with regard to the number of samples present in the training set. We categorized
the frequency of each unique graphemes in the training set, f according to quar-
tile division. The the specific intervals are f > 165 (the top 25% most frequent
graphemes in the training set) 157 < f ≤ 165, 143 < f ≤ 157, 0 < f ≤ 143(the
bottom 25%). Additionally, the graphemes not present in training set were cor-
respond to f = 0. The performance of each Tier is tabulated in Table 6. One
thing to notice here is that the error rate of graphemes is significantly higher
for the Tier 4 class (The error rate here is the percentage of graphemes the
submission predicted incorrectly and is not the same as the competition score).
Additionally, better submissions perform better in general. However, the error
rate on the OOD set is still higher than the other categories for all of the Tiers.

F Confusion between consonant and vowel roots of Tier 1
submissions

It has been suggested in Section 4.6 that class imbalance could cause models to
focus on features of roots and diacritics that are more frequent in the dataset.
Due to nature of Bengali orthography, many glyphs share features that are very
similar. This causes model to confuse an infrequent grapheme in the dataset to
be misclassified as a more frequent one. It is therefore essential to understand
which features of a glyph the models are putting importance on. This may be
approximated by looking at how much each consonant root has been misclassified
in the form of a confusion network graph shown in Fig. 9. We can notice here
that many of the misclassified roots are expected. For example, হ and ই are
miscalssified more frequently by the Tier 1 models and this can be attributed to
the similarity of their glyphs. However, there are other consonant roots like ঔ
and ঐ which do not share strong similarity but are still misclassified frequently.
This suggests that the models could also focus on specific parts of the characters
for similarity instead of their primary structure. Fig. 9 also suggest that in
handwritten form, a lot of these consonants have reduced difference in their
glyphs compared to their printed form. This can also be used as a guideline for
future datasets as well as rule based methods to take into account the natural
similarity between handwritten graphemes.
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G Confusion between Conjunct roots with common
consonants

The presence of common consonants between conjunct roots influence the confu-
sion between them. If we look at the the error rate of graphemes with consonant
conjuncts as roots, we will see that a majority of the graphemes are predicted
as a different conjunct with a common character. Of the erroneous predictions
made by Tier 1 models, 56.1% of the error is due to confusion between conjunct
roots that have a common character; 28..8% of the total error is due to confusion
between roots with the same first character. This can be clearly seen in Figure
11, which shows the false negatives by all the Tier 1 submissions. The false neg-
atives can be seen to form a block diagonal arrangement in Figure 11a, when
the roots are ordered alphabetically. This arrangement results in conjuncts with
the same first character like ’দ্ঘ’ ’দ্দ’ ’দ্ধ’ and ’দব্’ to become adjacent. The similarity
between adjacent roots with the same first character can be seen in 11b and 11c.
High false negative off diagonal blocks can correspond to either confusion due
to the same second character in a root or confusion due to similar looking first
characters (Fig. 9). Example of such a case can be seen in Fig. 11e for similar
looking first characters ন and ণ.
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Fig. 11: False Negatives Matrix for roots compiled from all 664 Tier1 submis-
sions. The roots are arranged in aphabetic order. a shows the entire matrix. No-
tice the significant number of errors near the diagonal indicating that the first
character’s glyph is more prominent in corresponding conjuncts. Shown here,
b and c are blocks running along the diagonal with roots ’ক’,’ক্ক’,’ক্ট’,’ক্ত’,’ক্ল’,’ক্স’
and ’শ’,’শ্চ’,’শ্ন’,’শব্’,’শ্ম’,’শ্ল’ respectively. d shows a sample off diagonal block of roots
’ক’,’ক্ক’,’ক্ট’,’ক্ত’,’ক্ল’,’ক্স’ incorrectly predicted as ’শ’,’শ্চ’,’শ্ন’,’শব্’,’শ্ম’,’শ্ল’. Here the number
of false negatives are very low compared to the diagonal blocks as the glyphs are
not very similar with the exception of শ্ল and ক্ল due to same second character.
However, there are cases where off diagonal blocks show large errors due to stark
similarity in glyphs as shown in e.
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Fig. 12: Label verification tool for handwritten graphemes (see 4.3). The tool was
used by curators to check individual samples for errors. Samples with similar
ground truth are arranged sequentially along columns; to make sure that this
does not induce conformity bias, annotators had the option to hide the ground
truth labels (top-left corner in each grapheme block). Marked samples using this
tool are moved to a separate error folder after annotation is complete. Annotators
were also encouraged to revisit their error folders after each annotation pass to
normalize subjective choices between early and latter samples.
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Table 4: Table of all target variables and classes present in the dataset. Dia-
critics are written in their graphemic forms with grapheme root ‘ব’. Phonetic
transliterations in IPA standards are provided in brackets (·).

Target Variable Class

Grapheme
roots
(168)

Vowel Roots
অ (a), আ (ā), ই (i), ঈ (ī), উ (u), ঊ (ū), ঋ (r�), এ (ē),
ঐ (ai), ও (ō), ঔ (au)
Consonant Roots
ক (ka), খ (kha), গ (ga), ঘ (gha), ঙ (ṅa), চ (ca), ছ
(cha), জ (ja), ঝ (jha), ঞ (ña), ট (ṭa), ঠ (ṭha), ড (ḍa),
ঢ (ḍha), ণ (ṇa), ত (ta), থ (tha), দ (da), ধ (dha), ন
(na), প (pa), ফ (pha), ব (ba), ভ (bha), ম (ma), য (ya),
র (ra), ল (la), শ (śa), ষ (ṣa), স (sa), হ (ha), ড় (ṛa), ঢ়
(ṛha), য় (ẏa), ◌ং (�ṁ), ◌ঃ (�ḥ), ৎ (ṯ)
Conjunct Roots
ক্ক (kka), ক্ট (kṭa), ক্ত (kta), ক্ল (kla), ক্ষ (kṣa), ক্ষ্ণ (kṣṇa),
ক্ষ্ম (kṣma), ক্স (ksa), গ্ধ (gdha), গ্ন (gna), গব্ (gba), গ্ম
(gma), গ্ল (gla), ঘ্ন (ghna), ঙ্ক (ṅka), ঙ্ক্ত (ṅkta), ঙ্ক্ষ
(ṅkṣa), ঙ্খ (ṅkha), ঙ্গ (ṅga), ঙ্ঘ (ṅgha), চ্চ (cca), চ্ছ
(ccha), চ্ছব্ (cchba), জ্জ (jja), জ্জব্ (jjba), জ্ঞ (jña), জব্
(jba), ঞ্চ (ñca), ঞ্ছ (ñcha), ঞ্জ (ñja), ট্ট (ṭṭa), ড্ড (ḍḍa), ণ্ট
(ṇṭa), ণ্ঠ (ṇṭha), ণ্ড (ṇḍa), ণ্ণ (ṇṇa), ত্ত (tta), ত্তব্ (ttba), ত্থ
(t’tha), ত্ন (tna), তব্ (tba), ত্ম (tma), দ্ঘ (dgha), দ্দ (dda),
দ্ধ (d’dha), দব্ (dba), দ্ভ (dbha), দ্ম (dma), ধব্ (dhba), ন্জ
(nja), ন্ট (nṭa), ন্ঠ (nṭha), ন্ড (nḍa), ন্ত (nta), ন্তব্ (ntba),
ন্থ (ntha), ন্দ (nda), ন্দব্ (ndba), ন্ধ (ndha), ন্ন (nna), নব্
(nba), ন্ম (nma), ন্স (nsa), প্ট (pṭa), প্ত (pta), প্ন (pna),
প্প (ppa), প্ল (pla), প্স (psa), ফ্ট (phṭa), ফ্ফ (phpha), ফ্ল
(phla), ļ (bja), ŀ (bda), ł (bdha), বব্ (bba), ব্ল (bla),
ভ্ল (bhla), ম্ন (mna), ম্প (mpa), মব্ (mba), ম্ভ (mbha), ম্ম
(m’ma), ম্ল (mla), ল্ক (lka), ল্গ (lga), ল্ট (lṭa), ল্ড (lḍa),
ল্প (lpa), লব্ (lba), ল্ম (lma), ল্ল (lla), শ্চ (śca), শ্ন (śna),
শব্ (śba), শ্ম (śma), শ্ল (śla), ষ্ক (ṣka), ষ্ট (ṣṭa), ষ্ঠ (ṣṭha),
ষ্ণ (ṣṇa), ষ্প (ṣpa), ষ্ফ (ṣpha), ষ্ম (ṣma), স্ক (ska), স্ট
(sṭa), স্ত (sta), স্থ (stha), স্ন (sna), স্প (spa), স্ফ (spha),
সব্ (sba), স্ম (sma), স্ল (sla), স্স (s’sa), হ্ন (hna), হব্ (hba),
হ্ম (hma), হ্ল (hla)

Vowel Diacritics (11)
Null, বা (bā), িব (bi), বী (bī), বু (bu), বূ (bū), েব (bē),
ৈব (bai), েবা (bō), েবৗ (bau)

Consonant Diacritics (8) Null, বয্ (bya), বৰ্ (bra), বর্ (rba), বর্য্ (rbya), বৰ্য্ (brya),
বৰ্র্ (rbra), বঁ (b̃)
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Table 5: Public-Private score discrepancy in the submissions by Top 20 teams
Performance Public-Private Number of

Tiers Discrepancy,∆ Submissions

∆ ≤ 0.04 392
0.4 < ∆ < 0.06 211Tier 4

∆ ≥ 0.06 116

∆ ≤ 0.04 100
0.04 < ∆ < 0.06 158Tier 3

∆ ≥ 0.06 461

∆ ≤ 0.04 27
0.04 < ∆ < 0.06 191Tier 2

∆ ≥ 0.06 500

∆ ≤ 0.04 201
0.04 < ∆ < 0.06 159Tier 1

∆ ≥ 0.06 361

Table 6: Generalization performance with respect to different grapheme training
frequencies. f=0 corresponds to OOD graphemes.

Performance Training frequency, f Test Error
Tiers Rate(%)

f > 165 28.42
157 < f ≤ 165 28.34
143 < f ≤ 157 28.42
0 < f ≤ 143 28.42

Tier 4

f = 0 29.68

f > 165 4.47
157 < f ≤ 165 4.36
143 < f ≤ 157 4.48
0 < f ≤ 143 4.48

Tier 3

f = 0 6.02

f > 165 3.86
157 < f ≤ 165 3.77
143 < f ≤ 157 3.90
0 < f ≤ 143 3.87

Tier 2

f = 0 5.27

f > 165 3.37
157 < f ≤ 165 3.29
143 < f ≤ 157 3.41
0 < f ≤ 143 3.41

Tier 1

f = 0 4.44


